- Plug-in output relay for AC loads
- Low input current, 2 mA
- 3 A continuous current, $90 \mathrm{~A} / 20 \mathrm{~ms}$
- 0... 240 VAC nominal load voltage
- Over voltage protection and RC-snubber in output
- Works correctly from zero load upwards
- Power factor independent (0...1)
- Immune to disturbances on signal or load lines
- Shielded signal cabling not required
- CE (EMC and LVD tested)
- Not for motor loads

Block diagram

Specifications (at temperature of $25^{\circ} \mathrm{C}$)

Primary

Input voltage Input current at nominal voltage Input voltage range (abs.) Input impedance Switch-on voltage

Switch-off voltage

nominal	24 VDC
typical	2 mA
maximum	$2,2 \mathrm{~mA}$
minimum	18 VDC
maximum	32 VDC
typical	$12 \mathrm{k} \Omega$
typical	16 VDC
maximum	18 VDC
typical	14 VDC
minimum	12 VDC

Secondary

Load voltage	minimum	0 VAC
	nominal	240 VAC
(absolute)	maximum	265 VAC
Load current	maximum	3 A
Load current 20 ms	maximum	90 A
Voltage drop at max. load	typical	1 V
Output leakage	typical	2 mA
Switch-on delay	typical	$0,5 \mathrm{~ms}$
	maximum	1 ms
Switch-off delay	maximum	11 ms
Load power factor, cos ϕ		$0 \ldots 1$
dV/dt off-state	typical	$200 \mathrm{~V} / \mu \mathrm{s}$

Physical dimensions and other data

Temperature derating

Allowed load is derated to $1 / 3$ linearly from $+30{ }^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$ ambient temperature. When relays are mounted in mounting base the maximum load current for long period of time should be restricted in total to 50% of the current from the curve. I.e. all relays at 50% load continuously or 50% of the relays at 100% load continuously or all relays at 100% load 50% of the time. This restriction does not apply if there is at least $12,5 \mathrm{~mm}$ gap between relays.

Temperature range:

Storage: $\quad-40{ }^{\circ} \mathrm{C} \ldots+70{ }^{\circ} \mathrm{C}$
Operation: $\quad-10{ }^{\circ} \mathrm{C} \ldots+70{ }^{\circ} \mathrm{C}$

Derating curve for the relay.

Derating when switching inductive loads

There is no need to derate solid state output relay using a triac switch. The relay is indifferent to the power factor of the load. Calculation should be made however that the surge current does not exceed the specification. For reasons of heat dissipation, when the load will be switched frequently, the average current over a reasonable time should not exceed the specification for continuous operation.

Fusing

To protect relay against short circuit and overload a fast fuse with the correct rating for the load and the capacity of the relay should be chosen, for instance from the Wickman 193 range. Note that when overload current is not large it is possible that the fuse will not protect the relay because of the tolerance on the fuse rating.

Approvals

(ϵ The relay fulfils EMC-directive 89/336/EEC requirements. Product has been tested according generic standards EN500812 and EN50082-2. The relay fulfils also requirements of the low voltage directive 73/23/EEC.

Guarantee

The solid state I/O relays and accessories made by Delcon Oy are guaranteed free from design and manufacturing defects for a period of three years from the shipping date. For electromechanical relays the guarantee is one year. The guarantee liability is limited to replacement of defective material and related shipping charges. Defective products must be returned to the factory for evaluation. This guarantee does not cover damage due to incorrect use or electrical overload.

Delcon Oy

Veikkointie 4
03100 Nummela
Tel. +35897771180
Finland

